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Transition between quantum coherence and incoherence

S. P. Strong
School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540

~Received 14 February 1997!

We show that a transformed Caldeira-Leggett Hamiltonian has two distinct families of fixed points rather
than a single unique fixed point as often conjectured based on its connection to the anisotropic Kondo model.
The two families are distinguished by a sharp qualitative difference in their quantum coherence properties and
we argue that this distinction is best understood as the result of a transition in the model between degeneracy
and nondegeneracy in the spectral function of the ‘‘spin-flip’’ operator.@S1063-651X~97!05006-X#

PACS number~s!: 05.30.2d, 03.65.Bz
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The prototypical model for studying the loss of quantu
coherence is the Caldeira-Leggett or two-level system~TLS!
model. This model describes a two-state degree of freed
coupled to a bath of harmonic oscillators and the Ham
tonian is given by
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~1!

Here Ci is the coupling to thei th oscillator andmi , v i ,
xi , andpi are the mass, frequency, position, and moment
of the i th oscillator, respectively. We restrict our discussi
of the model to zero temperature and the so-called Oh
regime@1# where the spectral density of the bath is given
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~2!

In connection with questions of quantum coherence,
spin is taken to represent a macroscopic variable and
oscillators an environmental bath of unobservable, mic
scopic degrees of freedom. If the coupling to this bath
strong enough, then the quantum interference effects tha
isolated spin would exhibit can be wiped out by the effects
the environment. A quantity frequently studied in this co
text isP(t)5^sz(t)&. Heret.0 and the state of the syste
is obtained by evolving forward in time from at50 state
with sz51 and the oscillator bath in its equilibrium state f
sz clamped tosz51. For vanishing coupling to the environ
ment,P(t)5cos2Dt, with the oscillations resulting from the
interference between the various possible histories
sz(t8), 0,t8,t. As the coupling to the bath is turned o
these interference effects are expected to be gradually w
out, representing the generic loss of observability of interf
ence effects between the different possible histories
sz(t8). This corresponds to the quantum to classical cro
over for this model and it is known that fora5 1

2 @2#, there
are no oscillations of any kind and the interference effe
are completely unobservable:P(t)5exp(2Gt) with
G5D2/vc .
551063-651X/97/55~6!/6636~5!/$10.00
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This behavior is naturally understood in a model obtain
by making a canonical transformation@1# on the Hamiltonian
@Eq. ~1!, hereafter referred to as TLS#: HTLS8 5ÛHTLSÛ

21,
where

Û5expS 2
1

2
sz(

i

Ci

miv i
2p̂i D . ~3!

The new Hamiltonian takes the form

HTLS8 5
1

2
D~s1e2 iV1H.c.!1Hoscillators, ~4!

whereV5( i(Ci /miv i
2)pi . Hereafter, we refer to Eq.~4! as

the transformed Caldeira-Leggett~XCL! model.
In this model, the pointa5 1

2 is special in that the Hamil-
tonian can be converted into that of the so-called reson
level model@3#, which in turn is equivalent to the anisotrop
Kondo problem at the Toulouse point@4#. In general, the
XCL model can be connected in the limit of vanishingD to
the anisotropic Kondo model Hamiltonian~AKM !
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via the mapping

D5vcrJxy , ~6!

a5F12
2

p
arctanS prJz

4 D G2, ~7!

wherer is the density of states that follows fromek . The
AKM has a unique fixed point for all antiferromagneticJz
(0,a,1) @5# and it has therefore been argued that the T
and XCL Hamiltonians also have unique fixed points. Ho
ever, the study of the XCL Hamiltonian by Guineaet al. @6#
concluded that there was a line of fixed points for 0,a, 1

2

and that only fora> 1
2 was the system described by th

unique Kondo fixed point. It would have great intuitive a
peal if the ‘‘incoherent’’ and ‘‘coherent’’ phases of the TL
model corresponded to different fixed points; however, a d
6636 © 1997 The American Physical Society
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55 6637TRANSITION BETWEEN QUANTUM COHERENCE AND . . .
ferent study by Guinea@7# and another recent study@8,9# of
the long-time behavior of̂ sz(t)sz(0)& concluded that
asymptotic behavior is;t22 for anya with 0,a,1. This
result is consistent with a unique fixed point. Thus, wh
there is some uncertainty, the accepted wisdom is tha
three Hamiltonians exhibit only a single fixed point and th
consequently, no true, long-time distinction exists betwe
the coherent and incoherent phases. The purpose of this
per is to demonstrate that, while the anisotropic Kon
model may possess a unique fixed point for antiferrom
neticJz and we find no evidence for multiple fixed points
the regime 0,a,1 for the TLS Hamiltonian, the XCL
Hamiltonian does possessan entire family of fixed points
distinguished by different values ofa @10#. Further, there is
a true, qualitative, long-time distinction between the beh
ior for 0,a, 1

2 and 1
2,a,1. This distinction is directly

related to questions of quantum~in!coherence and, we be
lieve, to the effective transition between degeneracy
nondegeneracy of the action of the spin-flip operator.

As mentioned, questions of quantum coherence have
ditionally focused on the quantityP(t) defined above and th
question of whether or not it exhibits oscillations at ‘‘inte
mediate times’’~times of order the Kondo scale!. In the XCL
model, there exists a more direct probe of quantum coh
ence: the off-diagonal components of the density matrix
scribing the two-state degree of freedom when the oscilla
bath is traced over@11,12#. The sum of the two off-diagona
components of the density matrix is given by^sx&, so we
choose as our probes of quantum coherence the correl
functions ofsx.

First, consider the behavior of the time symmetrized c
relation: F(t)5 1

2^$s
x(t),sx(0)%& in the solvable limits

a50 and a51/2. At a50, the problem is trivial and
F(t)51 becausêsx&51; the system has maximal quantu
coherence in the sense that the off-diagonal componen
the density matrix are as large as the diagonal. Ata51/2,
the Toulouse refermionization may be used a
F(t)5exp(2Gt), which is identical toP(t). At this point
there is no sign of any quantum coherence: not only
^sx&50, but the correlations ofsx entering intoF(t) decay
faster than any power oft.

Now consider other values ofa; here we follow the nu-
merical approach of@8# and study the imaginary time corre
lation function ^sx(t)sx(0)& using the Coulomb gas~CG!
language@13#. Recall that the CG model related to the AKM
is a one-dimensional model with alternating plus and min
charges that interact with a logarithmic Coulomb interact
whose strength is proportional toa @13#. We choose to use
an inverse squared Ising~ISI! model as a specific realizatio
of the CG with a short-distance regularization provided
the lattice. The ISI model is defined onN sites with the
Hamiltonian

HI52
JNN
2 (

0> i,N
SiSi112

JLR
2 (

i, j

~p/N!2SiSj
sin2@p~ j2 i !/N#

,

~8!

whereJLR5a, N5bXCL , andD;2exp@2JNN2JLR(11g)#,
with g Euler’s constant.

The correlation functionG(t)5^s1(t)s2(0)& is given
by the ratio of a certain ‘‘twisted’’ CG partition function to
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the usual partition function. The twisted partition function
defined by restricting the sum over states to those where
charges on either sidex50 are positive and those on eithe
side ofx5t are negative and requiring that, elsewhere,
charges alternate as usual. This ratio can be computed in
ISI language as the inverse of the usual ISI partition funct
times the sum over all states that havesz(0)51 and
sz(t)51 of a Boltzmann-like term exp(2Emodified).
Emodified is defined byEmodified52E812E92E23E0. E,
E8, E9, and E0 are the energies computed using the I
Hamiltonian and, respectively, the actual configuration c
sidered, the configuration obtained from the actual by rem
ing all domain walls from spins 1 tot, the configuration
obtained from the actual by removing all domain walls fro
spinst11 toN, and the fully polarized configuration. In th
CG language, this reverses the signs of all the charges
tween x50 and x5t, the appropriate operation for th
change in allowed configurations induced bys1(t)s2(0).

We have used Monte Carlo methods to studyG(t) and
typical results are depicted in Figs. 1 and 2. For distan
large compared to the Kondo scale, the results are cle
well described by a power decay ofG(t) ast22a. The long-
time behavior ofG is therefore different for differenta,
which establishes that the XCL model possesses a line
fixed points, not a single strong-coupling fixed point@14#.
The result can be simply understood in the CG langu
where the insertion of as1 (s2) acts to change the allowe
configurations to those requiring two consecutive posit
~negative! charges about the insertion point. The finite fuga
ity of other charges translates this into an effective cha
insertion for distances long compared to the Kondo sc
and this insertion of an extra charge cannot be screened s
plus and minus charges are required to alternate away f

FIG. 1. A log-log plot ofG(t5b/25N/2) versusb/25N/2. *
correspond toa50.2, TK ~as defined in Ref.@7#! ;0.70; h to
a50.4, TK;0.66; n to a50.6, TK;0.62; andL to a50.8,
TK;0.62. Dashed lines are guides to the eye with slopes of 0.4,
1.2, and 1.6, the expected behaviors ifG(t5b/25N/2)}t22a.
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FIG. 2. A log-log plot of G(t) versus
sin(pt/b) for N5b5256. * correspond to
a50.2,TK;0.70;h to a50.4,TK;0.66;n to
a50.6, TK;0.62; andL to a50.8, TK;0.62.
Dashed lines are guides to the eye with slopes
0.4, 0.8, 1.2, and 1.6, the expected behaviors
G(t)}sin22a(pt/b).
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insertions. Therefore, at long distances,G behaves as the
charge insertion correlator with unrenormalizeda.

While all a correspond to different fixed points, there
an important distinction betweena, 1

2 and a. 1
2. For

0,a, 1
2, the long-imaginary-time behavior ofG dominates

the low-frequency behavior and a continuation from Mats
ara frequencies to real frequencies will give a low-frequen
singularity in Gret(v);uvu2112aei (p/2)(122a)sgn(v). Since
the spectral function diverges at low frequencies, we kn
thatG(t);F(t);t22a, with the prefactor inF vanishing as
a→ 1

2 @15#. Throughout this region, the susceptibility of th
systems with respect to a perturbation coupling tosx:

xcoh5E
0

`

dt@sx~ t !,sx~0!#, ~9!

is divergent; the system is enormously sensitive to any sm
perturbation that tends to induce coherence as defined
finite off-diagonal elements in the density matrix. Co
versely, for12,a,1, xcoh is finite because of the rapid deca
of the correlation functions ofsx, and this sensitivity is ab-
sent.

We believe that the disappearance of the divergent
ceptibility may be interpreted as a ‘‘transition’’ from dege
eracy to nondegeneracy in the action ofD, as has been pre
viously suggested@16#. To understand this, consider th
meaning ofs1 (s2) in the XCL language. The Hilber
space of the system is spanned by theD50 eigenstates
which consist of two towers of oscillator eigenstates (uAi&
and uBi&). The towers are distinguished by the value ofsz,
but are otherwise identical (uAi&5s1uBi&). At finite D and
for a,1, the ground state is a complicated superposition
these states@ uC0&5( i(l i

auAi&1l i
buBi&)# with equal weight
-
y

w

ll
by

s-

f

coming from each tower (( i ul i
au25( i ul i

bu25 1
2!. sx converts

the l i
b’s into the l i

a’s ~and vice versa!, probing the phase
relationship between thela’s and thelb’s. The vanishing of
^s1& implies that the phases of thela’s and thelb’s are, on
average, completely uncorrelated in the ground state. T
might appear natural since, away froma50, the matrix el-
ements of theD term in the Hamiltonian connectinguAi& and
uBi& vanish in theD50 ground state due to an orthogonali
catastrophe. However, consider the spectral function in
D50 ground state foreiV:

rD~v!5(
m

z^mueiVug.s.& z2d~v2Em!

5G21~2a!u1~v!v2112avc
22aexp~2v/vc!.

~10!

For smalla the spectral function is strongly peaked abo
small energy. The phases of thel i

a associated with various
low-lying statesuAi& should therefore be weakly correlate
with the phases of a large number ofl j

b that represent state
nearly degenerate in energy. The dephasing of these s
resulting from their energy difference with respect to t
D50 Hamiltonian is very slow and, since the phases of e
of thesel j

b should be correlated with the phases of a lar
number oflk

a , which again represent states nearly degen
ate in energy~and nearly degenerate withuAi&), there should
be an increasingly strong tendency for the phases of
la’s and thelb’s to correlate in the limit of smalla. It is this
near degeneracy of the perturbation theory inD that under-
lies the very slow decay of thesx correlations in time and
the diverging susceptibility to coherencexcoh. As we tune
a up from 0, we move away from the case whereD couples
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completely or even nearly degenerate states, until ata5 1
2,

the spectral functionrD is completely flat, perturbation
theory inD is nondegenerate, andxcoh is finite.

Since evolution of the effects ofD in the XCL from de-
generate to nondegenerate is not merely quantitative but
qualitative changes in the long-time behavior of the syst
associated with it, it is natural to conjecture that the
changes underly the evolution from coherence to incoh
ence of the TLS model. In fact, the near degeneracy w
respect to theD50 Hamiltonian of the states connected
D is also exactly what is required to allow quantum interf
ence to be observable as oscillations inP(t) @16# and the
oscillations inP(t) vanish ata5 1

2 @2#, precisely the point
where the susceptibility to ‘‘coherence’’ became finite.

Given this, it is natural to ask whether or not the TL
model has a unique fixed point for 0,a,1 or several dif-
ferent fixed points, some of which exhibit quantum coh
ence and some of which do not. If one takes thesx operator
whose correlations distinguished the fixed points of the X
model and maps it back to the TLS model, it becomes
operator 1

2(s
1eiV1H.c.), so the fact that it exhibits a

a-dependent power law in its correlation functions is uns
prising and not necessarily indicative of multiple fixe
points. In fact, the behavior is expected based on the des
tion of the physics of the TLS given in@7#, where it was
argued that the low-lying oscillators~those with energies be
low what I am callingTK) are unaffected by the two-stat
degree of freedom. Further, for the TLS, the off-diagon
elements of the density matrix for the spin of the TLS mo
have no interestinga dependence since they are finite f
finite D and anya,1. It therefore appears very likely tha
the TLS problem for 0,a,1 is described by a single
unique fixed point, although the interesting change in
er
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intermediate time properties ofP(t) appears intimately con
nected to the different quantum coherence properties of
different XCL fixed points.

Similarly to the TLS case, for the AKM, the operators th
correspond to thesx operator of the XCL take the form
1
2(s

1e2 i (A12a)f(0)1H.c.) and again thea-dependent corre-
lation functions neither require nor suggest multiple fix
points. Thus the results presented here are not in contra
tion to previously known results. They do demonstrate
surprising fact that the renormalization-group flows for t
XCL model are vertical in (a,D) space for 0,a,1, with
D growing large, buta as measured by the correlations
sx unrenormalized at large scales. This result is of particu
interest since a number of problems involving coupled L
tinger liquids have been connected to the AKM because t
are analogous to the XCL model. These models may wellnot
exhibit a unique fixed point as has commonly been suppo
based on that connection.

In conclusion, we have studied the correlation functio
of the sx operator of the transformed Caldeira-Legg
model defined by Eq.~4! and we find clear evidence for tw
distinct families of fixed points. The two families are distin
guished by the~in!finiteness of a particular susceptibility tha
is closely connected to the question of the quantum coh
ence of thes variable. We identify the transition in behavio
between the two regimes as an effective ‘‘transition’’ fro
degenerate to nondegenerate action by the operatorD and
have shown that it is closely connected to the quantum
classical crossover of the Caldeira-Leggett model.

S.P.S. acknowledges useful conversations with David
Clarke and financial support from U.S. DOE Grant No. D
FG02-90ER40542.
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