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Transition between quantum coherence and incoherence
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We show that a transformed Caldeira-Leggett Hamiltonian has two distinct families of fixed points rather
than a single unique fixed point as often conjectured based on its connection to the anisotropic Kondo model.
The two families are distinguished by a sharp qualitative difference in their quantum coherence properties and
we argue that this distinction is best understood as the result of a transition in the model between degeneracy
and nondegeneracy in the spectral function of the “spin-flip” operd®1t063-651X97)05006-X|

PACS numbg(s): 05.30—d, 03.65.Bz

The prototypical model for studying the loss of quantum  This behavior is naturally understood in a model obtained
coherence is the Caldeira-Leggett or two-level systé€hs) by making a canonical transformatiph] on the Hamiltonian
model. This model describes a two-state degree of freedofEq. (1), hereafter referred to as Tu-.SH"I'LSZOHTLSU_lv
coupled to a bath of harmonic oscillators and the Hamilyyhere
tonian is given by
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The new Hamiltonian takes the form

His=5A(o e "+ H.c) + Hoscillators 4
Here C; is the coupling to thdth oscillator andm;, ;, s~ A )+ Hoscitators @

X;, andp; are the mass, frequency, position, and momentum )
of theith oscillator, respectively. We restrict our discussionWhereQ==;(C; /mjwj)p; . Hereafter, we refer to Eq4) as
of the model to zero temperature and the so-called ohmithe transformed Caldeira-LeggeXCL) model.

regime[1] where the spectral density of the bath is given by I this model, the pointx=; is special in that the Hamil-
tonian can be converted into that of the so-called resonant

level model 3], which in turn is equivalent to the anisotropic
c? Kondo problem at the Toulouse poif#]. In general, the
m,o; Sw=w)=2mawexpy—ol/w). XCL model can be connected in the limit of vanishifgto
2) the anisotropic Kondo model HamiltonidAKM )

Iw)=52

t Iy + -

In connection with questions of quantum coherence, the HKondozgf €kCk,oCk o T TKEq (Cx1Cq, S +H.C)
spin is taken to represent a macroscopic variable and the ' '
oscillators an environmental bath of unobservable, micro- J, + + ,
scopic degrees of freedom. If the coupling to this bath is +§% (Ck,1Cq,1 —Ck,|Cq,1)S ®)
strong enough, then the quantum interference effects that the '
isolated spin would exhibit can be wiped out by the effects ofyia the mapping
the environment. A quantity frequently studied in this con-
text is P(t)=(a?*(t)). Heret>0 and the state of the system A=wcplyy, (6)
is obtained by evolving forward in time from =0 state
with ¢*=1 and the oscillator bath in its equilibrium state for
o” clamped tas*= 1. For vanishing coupling to the environ-
ment, P(t) = cos\t, with the oscillations resulting from the
interference between the various possible histories ofvherep is the density of states that follows froey. The
o%(t’), 0<t’'<t. As the coupling to the bath is turned on AKM has a unique fixed point for all antiferromagnetig
these interference effects are expected to be gradually wipdd<a<1) [5] and it has therefore been argued that the TLS
out, representing the generic loss of observability of interferand XCL Hamiltonians also have unique fixed points. How-
ence effects between the different possible histories oéver, the study of the XCL Hamiltonian by Guinegal. [6]
o%(t"). This corresponds to the quantum to classical crosseoncluded that there was a line of fixed points for 8< 3
over for this model and it is known that far=3 [2], there  and that only fora=3 was the system described by the
are no oscillations of any kind and the interference effectainique Kondo fixed point. It would have great intuitive ap-
are completely unobservable:P(t)=exp(-I't) with peal if the “incoherent” and “coherent” phases of the TLS
I'=A%w,. model corresponded to different fixed points; however, a dif-

2

: )

a=

wpd,
4

2
1— —arcta
o™

1063-651X/97/58)/66365)/$10.00 55 6636 © 1997 The American Physical Society
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ferent study by Guinef7] and another recent stud§,9] of
the long-time behavior of(a*(t)c*(0)) concluded that
asymptotic behavior is-t~2 for any a with 0<a<1. This 0.1
result is consistent with a unique fixed point. Thus, while
there is some uncertainty, the accepted wisdom is that a
three Hamiltonians exhibit only a single fixed point and that, NN ~.
consequently, no true, long-time distinction exists betweer NN 3
the coherent and incoherent phases. The purpose of this p
per is to demonstrate that, while the anisotropic Kondc
model may possess a unique fixed point for antiferromag
neticJ, and we find no evidence for multiple fixed points in
the regime B<a<1 for the TLS Hamiltonian, the XCL AN hN
Hamiltonian does possesan entire family of fixed points N
distinguished by different values of [10]. Further, there is ~ 0-001 N o
a true, qualitative, long-time distinction between the behav-
ior for 0<a<3 and 3<a<1. This distinction is directly
related to questions of quantu(m)coherence and, we be- : .
lieve, to the effective transition between degeneracy ani
nondegeneracy of the action of the spin-flip operator. 10001 * e el
; ; . 10 100
As mentioned, questions of quantum coherence have tr:
ditionally focused on the quantify(t) defined above and the B2
guestion of whether or not it exhibits oscillations at “inter-
mediate times’(times of order the Kondo scaldn the XCL FIG. 1. A log-log plot ofG(7= B/2=N/2) versusp/2=N/2. *
model, there exists a more direct probe of quantum coherorrespond toa=0.2, T¢ (as defined in Ref[7]) ~0.70; O to
ence: the off-diagonal components of the density matrix dea=0.4, Tx~0.66; A to «=0.6, Tx~0.62; and ¢ to «=0.8,
scribing the two-state degree of freedom when the oscillatofk~0.62. Dashed lines are guides to the eye with slopes of 0.4, 0.8,
bath is traced ove11,12. The sum of the two off-diagonal 1.2, and 1.6, the expected behaviorgfr= g/l2=N/2)x 7>,
components of the density matrix is given by*), so we
choose as our probes of quantum coherence the correlatiahe usual partition function. The twisted partition function is
functions ofc™. defined by restricting the sum over states to those where the
First, consider the behavior of the time symmetrized corcharges on either side=0 are positive and those on either
relation: F(t)=3({o*(t),0*(0)}) in the solvable limits side ofx=r are negative and requiring that, elsewhere, the
a=0 and a=1/2. At «=0, the problem is trivial and charges alternate as usual. This ratio can be computed in the
F(t)=1 becausés™)=1; the system has maximal quantum IS| language as the inverse of the usual ISI partition function
coherence in the sense that the off-diagonal components ¢imes the sum over all states that hawé(0)=1 and
the density matrix are as large as the diagonalaAtl/2, o¢*7)=1 of a Boltzmann-like term exp{Emnodgified -
the Toulouse refermionization may be used andE,gieq iS defined by Eodied= 2E' +2E”—E—3E°. E,
F(t)=exp(-Tt), which is identical toP(t). At this point E’, E”, and E° are the energies computed using the ISI
there is no sign of any quantum coherence: not only isHamiltonian and, respectively, the actual configuration con-
(0*)=0, but the correlations af* entering intoF (t) decay sidered, the configuration obtained from the actual by remov-
faster than any power df ing all domain walls from spins 1 te, the configuration
Now consider other values af; here we follow the nu- obtained from the actual by removing all domain walls from
merical approach ofg8] and study the imaginary time corre- spinst+ 1 to N, and the fully polarized configuration. In the
lation function({c*(7)c*(0)) using the Coulomb ga€CG) CG language, this reverses the signs of all the charges be-
languagd 13]. Recall that the CG model related to the AKM tween x=0 and x=r, the appropriate operation for the
is a one-dimensional model with alternating plus and minugshange in allowed configurations induced &Y (7)o (0).
charges that interact with a logarithmic Coulomb interaction We have used Monte Carlo methods to sty) and
whose strength is proportional @ [13]. We choose to use typical results are depicted in Figs. 1 and 2. For distances
an inverse squared IsingS!) model as a specific realization large compared to the Kondo scale, the results are clearly
of the CG with a short-distance regularization provided bywell described by a power decay @) as+ 2. The long-
the lattice. The ISI model is defined dd sites with the time behavior ofG is therefore different for differentr,
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Hamiltonian which establishes that the XCL model possesses a line of
) fixed points, not a single strong-coupling fixed poja#].
H _ I S ss —JﬂE (mIN)°SS; The result can be simply understood in the CG language
2 oA T 2 & sinf[w(j—1)INT where the insertion of @™ (o) acts to change the allowed

(8) configurations to those requiring two consecutive positive

(negative charges about the insertion point. The finite fugac-

whereJ g=a, N=Bxc., and A~2exg —Iyw—JIr(1+ Y], ity of other charges translates this into an effective charge

with v Euler’s constant. insertion for distances long compared to the Kondo scale,
The correlation functiorg(7)=(o " (7)o~ (0)) is given  and this insertion of an extra charge cannot be screened since
by the ratio of a certain “twisted” CG partition function to plus and minus charges are required to alternate away from
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insertions. Therefore, at long distancé,behaves as the coming from each towerX;|A??=3;|\P|?=1). o* converts

charge insertion correlator with unrenormalized the )\ib’s into the \*'s (and vice versp probing the phase
While all « correspond to different fixed points, there is relationship between the®'s and thex’s. The vanishing of

an important distinction betweem<3 and a>3. For (s*) implies that the phases of thé’s and thex"'s are, on

0<a<3, the long-imaginary-time behavior ¢f dominates  average, completely uncorrelated in the ground state. This

the low-frequency behavior and a continuation from Matsub-might appear natural since, away fram=0, the matrix el-

ara frequencies to real frequencies will give a low-frequencyements of the\ term in the Hamiltonian connectirid) and

singularity in Gre(w)~|w| 1*22e!("A(1-20)5000) " since  |B) vanish in theA =0 ground state due to an orthogonality

the spectral function diverges at low frequencies, we knowatastrophe. However, consider the spectral function in the

that G(t)~F(t) ~t 2%, with the prefactor irF vanishingas A=0 ground state foe':

a— 3 [15]. Throughout this region, the susceptibility of the

systems with respect to a perturbation couplingrto .
’ pre e ap pa(w)=3 (mle®g.s)Po(wEn)

Xcoh™ fo dtfa*(t),a(0)], C) =F71(2a)0+(w)w71+2“wgzaexp(—w/wc).

(10)

is divergenf the system is enormously sensitive to any small o
perturbation that tends to induce coherence as defined dyor Smalla the spectral function is strongly peaked about
finite off-diagonal elements in the density matrix. Con-Small energy. The phases of th@ associated with various
versely, fori< a<1, yconis finite because of the rapid decay l0w-lying states|A;) should therefore be weakly correlated
of the correlation functions of*, and this sensitivity is ab- With the phases of a large number)df that represent states
sent. nearly degenerate in energy. The dephasing of these states

We believe that the disappearance of the divergent sugesulting from their energy difference with respect to the
ceptibility may be interpreted as a “transition” from degen- A=0 Hamiltonian is very slow and, since the phases of each
eracy to nondegeneracy in the actionfofas has been pre- of these)\Jb should be correlated with the phases of a large
viously suggested16]. To understand this, consider the number of\{, which again represent states nearly degener-
meaning ofc* (¢7) in the XCL language. The Hilbert ate in energyand nearly degenerate with,)), there should
space of the system is spanned by the-0 eigenstates, be an increasingly strong tendency for the phases of the
which consist of two towers of oscillator eigenstat¢éd;Y  A®s and the\"’s to correlate in the limit of smalk. It is this
and|B;)). The towers are distinguished by the valuesdf  near degeneracy of the perturbation theoninthat under-
but are otherwise identical4;)=0c"|B;)). At finite A and lies the very slow decay of the* correlations in time and
for <1, the ground state is a complicated superposition othe diverging susceptibility to coherengg,,. As we tune
these stateE|\If0):Ei()\f‘|Ai>+)\F|Bi))] with equal weight @ up from 0, we move away from the case whareouples
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completely or even nearly degenerate states, untit-at, intermediate time properties &f(t) appears intimately con-
the spectral functionp, is completely flat, perturbation nected to the different quantum coherence properties of the
theory inA is nondegenerate, ang..y, is finite. different XCL fixed points.

Since evolution of the effects df in the XCL from de- Similarly to the TLS case, for the AKM, the operators that

generate to nondegenerate is not merely quantitative but h@grrespond to ther* operator of the XCL take the form
gualitative changes in the long-time behavior of the systen(;+g-i(I=@)4(0) H.c.) and again ther-dependent corre-
associated with it, it is natural to conjecture that thesqaiion functions neither require nor suggest multiple fixed
changes underly the evolution from coherence to incoherygints. Thus the results presented here are not in contradic-

ence of theh;'&L_Somﬁdel..l In fact, fthﬁ near degeneraq:j ngfion to previously known results. They do demonstrate the
respect to thel = amiltonian of the states connected by surprising fact that the renormalization-group flows for the

A is also exactly what is required to allow quantum mterfer-xCL model are vertical in ¢,A) space for &< a<1, with

ence to be observable as oscillationsHA(t) [16] and the : ;

o . i T : . A growing large, bute as measured by the correlations of
oscillations inP(t) vanish ate=3 [2], precisely the point ” X . ;
where the susceptibility to “coherence” became finite. o unrenqrmallzed at large scales. Th_ls resylt is of particular

Given this. it is natural to ask whether or not the TLS interest since a humber of problems involving coupled Lut-

S . . . tinger liquids have been connected to the AKM because they
< -
model has a unique fixed point foOx<<1 or several dif are analogous to the XCL model. These models may mal

ferent fixed points, some of which exhibit quantum coher-~_"." : ) .
ence and some of which do not. If one takes affeoperator exhibit a unique fixed point as has commonly been supposed
) based on that connection.

whose correlations distinguished the fixed points of the XCL . . . .

; . In conclusion, we have studied the correlation functions
model and maps it back to the TLS model, it becomes theof the o* operator of the transformed Caldeira-Leggett
operator 3(c"e'*+H.c.), so the fact that it exhibits an o op , : 99

T . : . model defined by Eq4) and we find clear evidence for two
a-dependent power law in its correlation functions is unsur-. . o ' ; - L
s G : ! distinct families of fixed points. The two families are distin-
prising and not necessarily indicative of multiple fixed

points. In fact, the behavior is expected based on the descriﬁ—u'Shed by théin)finiteness of a particular susceptibility that

! . ) . . is closely connected to the question of the quantum coher-
tion of the physics of the TLS given ifi7], where it was i . ) o e X
argued that the low-lying oscillatofghose with energies be- ence of thar varlable._ We identify the ”?‘”S!F'O” In _berlawor
low what | am callingT) are unaffected by the two-state between the two regimes as an effectlve transition” from
degree of freedom. Further, for the TLS, the off—diagonalﬂg\g:nser:g\tsnt?hgfndg gggirea}teciﬁr']cg;t% igetﬁgef;?]?gm to
elements of the density matrix for the spin of the TLS model : y €O q

, ' . . classical crossover of the Caldeira-Leggett model.
have no interestingr dependence since they are finite for
finite A and anya<<1. It therefore appears very likely that S.P.S. acknowledges useful conversations with David G.
the TLS problem for &<«<1 is described by a single Clarke and financial support from U.S. DOE Grant No. DE-
unique fixed point, although the interesting change in thedFG02-90ER40542.
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